

Accurate Coriolis Mass Flow and Density of Bubbly Liquids

Measurement Focus Group Meeting

December 7th 2022

Agenda

- Introduction
- Coriolis Meters Operating in Bubbly Flows
- Speed of Sound Augmented Coriolis Meters
- Experimental Data on Coriolis Meters Operating in Bubbly Flows
- Correcting Errors in Mass Flow, Density, and Volumetric Flow
- Applications in Energy Industry
- Summary

Introduction

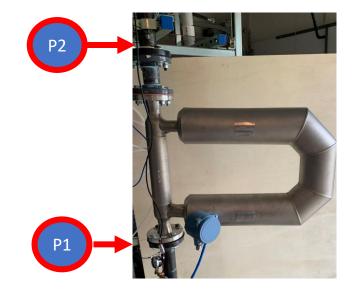
- Coriolis meters are the meter of choice for many applications due to their accuracy, reliability, safety advantages and low operational costs
 - Introduced in 1978, Coriolis meter now serve >20% of the \$10 billion Industrial flow meter market
- Coriolis meters are calibrated to accurately measure a wide range of single-phase flows
 - Historically Entrained Gas is known to degrade both the operability and accuracy of Coriolis meters
 - Modern Coriolis meters have been designed to improve operability in bubbly flows
 - Modern Coriolis meters are not designed to, nor are they capable of, maintaining *accuracy* in generalized bubbly flows
- Augmenting Coriolis meters with a process fluid speed measurement enables Coriolis meters to maintain near-single phase accuracy in bubbly flow
- CorVera has developed proprietary technology to correct Coriolis measurement errors in presence of entrained gas, available through its CORxTM product platform

Theory of Errors of Coriolis Meters in Bubbly Flows

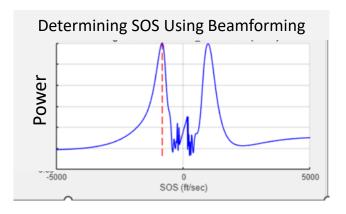
- Bubbly fluids exhibit more complex behavior than single phase fluids within vibrating Coriolis flow tubes causing Coriolis meter to report errors in mass flow and density
- Errors in Coriolis meters due to bubbly flows can be attributed to decoupling and compressibility

$$\rho_{meas} = \rho_{liq} \left(1 - \frac{k_d \alpha}{\alpha} + G_d f_{red}^2 \right) \quad \dot{m}_{meas} = \dot{m}_{liq} \left(1 - \frac{(k_m - 1)}{1 - \alpha} \alpha + G_m f_{red}^2 \right)$$

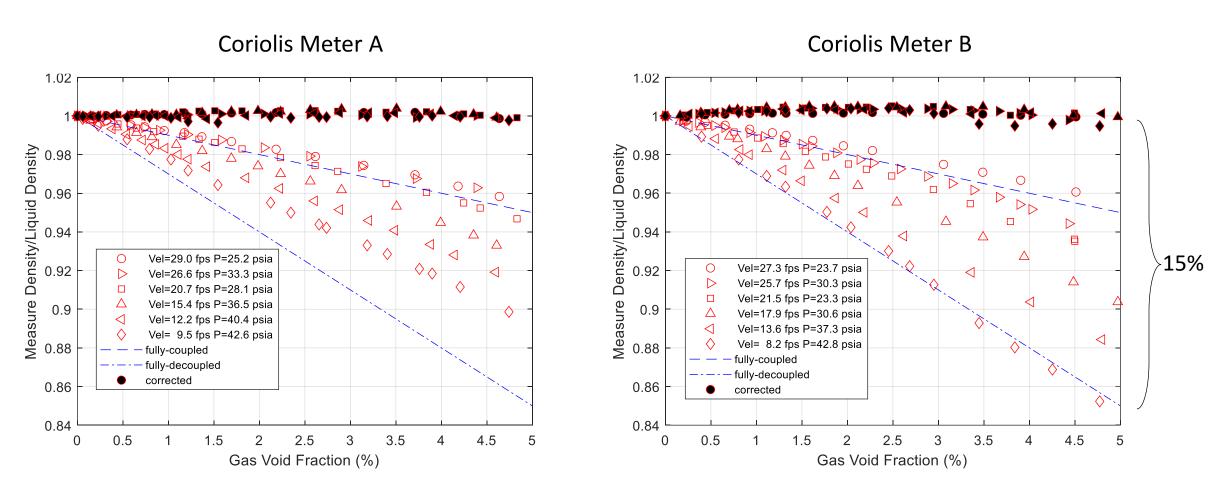
- Decoupling errors scale gas void fraction, α
- Compressibility errors scale with reduced frequency, $f_{red} = fR/a_{mix}$
- Gas void fraction and reduced frequency each scale with the Speed of Sound of the process fluid


High Viscosity, Small Bubbles

Low Viscosity, Large Bubbles

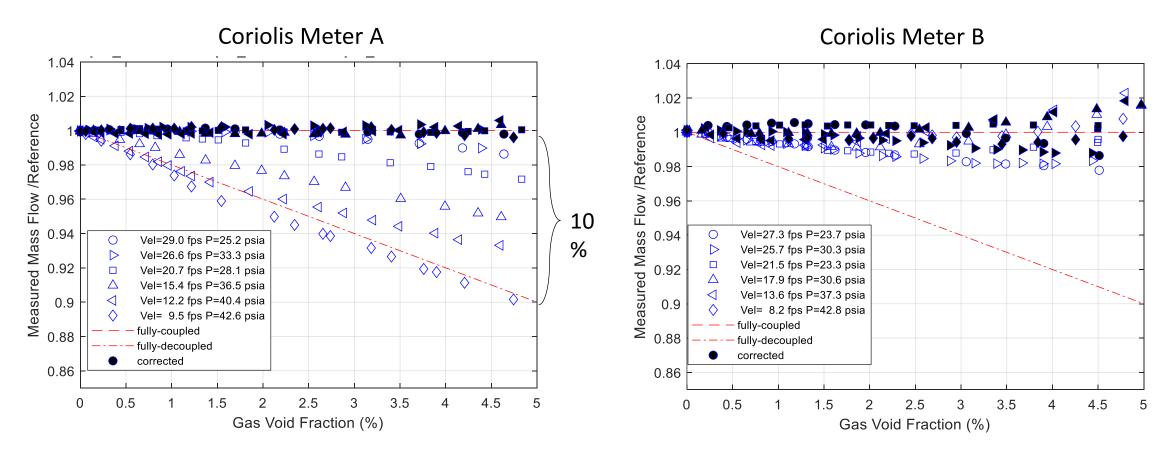

Speed of Sound Augmented Coriolis Meters

- Speed of sound is a thermophysical property of bubbly mixtures which quantifies both gas void fraction and the reduced frequency of bubbly flows within a Coriolis meter
- Measuring speed of sound provides a first-principles basis to mitigate errors associated with bubbly flows on a real-time basis
- CORxTM utilizes *beam-forming* techniques to determine the *speed of sound* of the process fluid by interpreting the output of an array of pressure transducers mounted externally to, and spanning the length of, the flow tubes of the Coriolis meter
- CORxTM does not affect/alter output from existing Coriolis meter, existing outputs used as input to correction



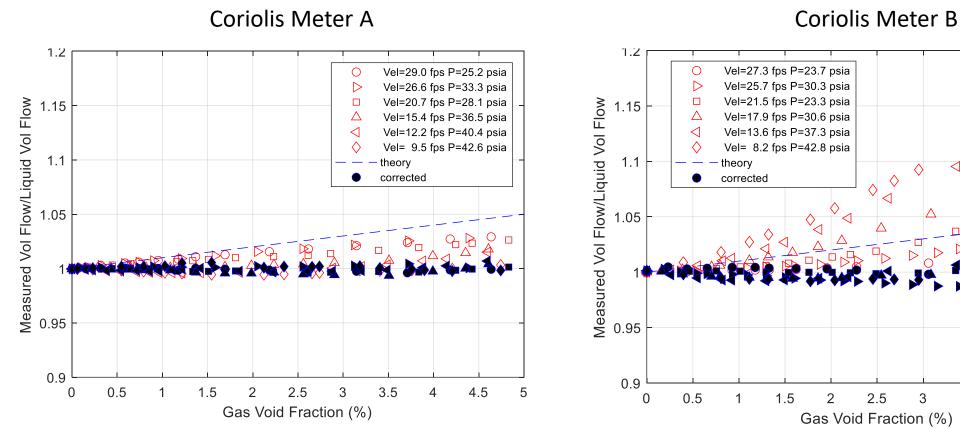
Minimally intrusive pressure sensors (P1,P2) installed in piping adjacent to Coriolis meter

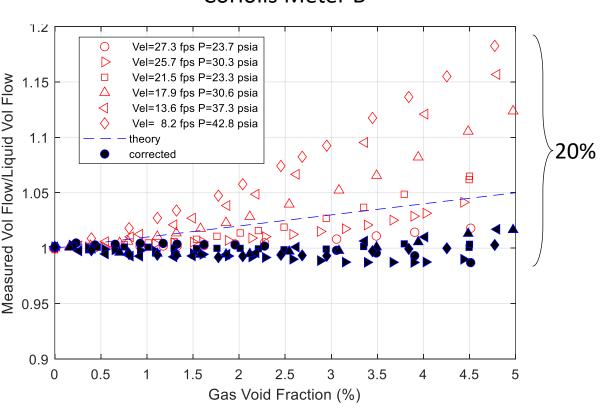
Measured and Corrected Liquid Density



Corrected liquid density determined utilizing measured density and gas void fraction to quantify compressibility / decoupling characteristics for each data set

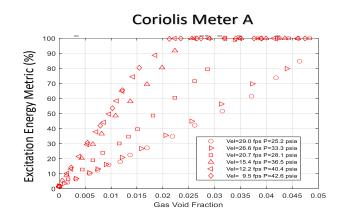
Measured and Corrected Liquid Mass Flow

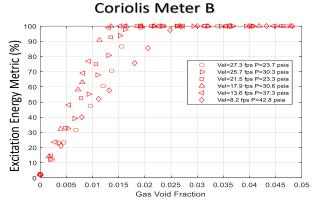




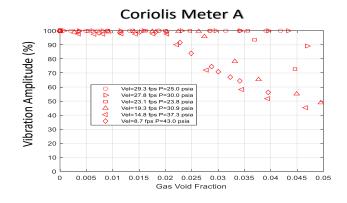
Corrected liquid mass flow determined utilizing measured mass flow, gas void fraction, reduced frequency and mass flow error function for each meter

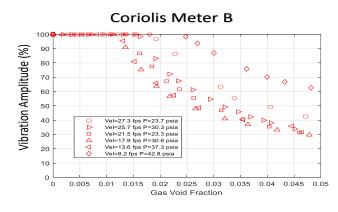
Measured and Corrected Liquid Volumetric Flow



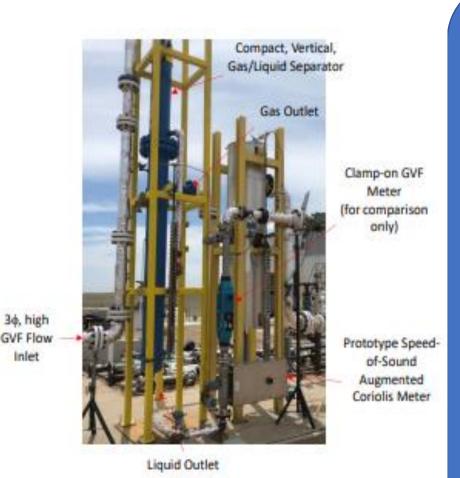


Corrected liquid volumetric flow determined using corrected liquid mass flow and the determined liquid density at each point


Excitation Energy Metric & Vibration Amplitude



Excitation energy metric saturates at relatively low percentage of gas void fraction

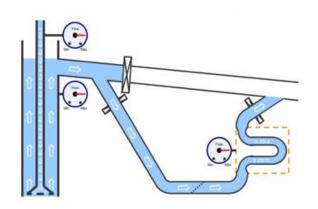

Corresponding vibration amplitude decreases after excitation energy metric saturates

Each Coriolis meter remains **operable** and continues to report **correctable** mass flow and density, with reduced vibration amplitudes and saturated excitation energy

SOS Augmented Coriolis meters enable Accurate Net Oil

- Live fluids hydrocarbon gas and condensate on 3\(\phi\) Flow Loop
- Coriolis Meter Installed on Liquid Leg of Separator
- GLCC Separator, Coriolis used for watercut
- Watercut held constant at 50% with gas carry-under varied by adjusting liquid level within Separator
- Raw watercut reported ranged from 30% to 45% for gas void fraction of 0.4 to 2.5%
- Corrected watercut matches reference watercut, independent of gas void fraction

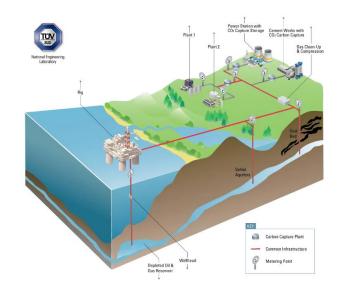
Modeled Reported Density Best Fit Ava Liquid 1-3GVF Gas Void Fraction (%) Reported and Corrected Density vs Gas Void Fraction Raw Watercut 0.015 1000 time(secs) Raw and Corrected Water and Gas

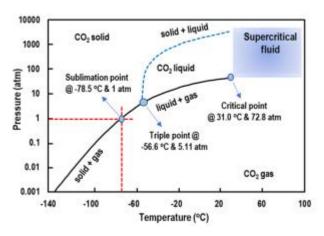

Void Fraction

Liquid Density Interpre

Managed Pressure Drilling (MPD)

- MPD is a closed-loop drilling technique in which
 - Pore pressure, formation fracture pressure, and bottom hole pressure are balanced and managed at surface
 - Used extensively where there is a narrow pore-pressure to fracture-pressure window
 - Mandated on Deep Water exploration wells
- Drilling fluid pressure is supplemented by an applied surface back pressure
- Undetected fluid influx, or fluid loss, within well bore can lead to loss of well control
- Monitoring fluid losses and gains within the well-bore in real-time is critical measurement
 - Coriolis meters are installed to measured mass flow into and out of wellbore to detect fluid loss or gain in wellbore
 - Coriolis meters at inlet are at high pressure and do not experience entrained gas issues
 - Entrained gas within the mud return line decreases Coriolis meter accuracy and impairs ability to detect fluid loss or gain in the well bore
 - Mud return line is often diverted to create vertical flow upwards through flag-mounted Coriolis on mud return line to help Coriolis meter manage entrained gases
- COR_XTM Speed of Sound Augmented Coriolis Technology
 - Provides Surety of mass balance in closed drilling system by fundamentally improving accuracy of mass flow measurement on Mud Return Line when entrained gas is present
 - Improves early kick detection capability
 - Detects and quantifies free gas in drilling fluid
 - Improves accuracy of drilling fluid density measurements





CCUS - Carbon Capture, Utilization, and Storage

- CCUS is key to reducing carbon emissions
- Monetization and the associated financial transactions, environmental compliance, tax credits, will require accurate flow measurement data at each stage of the chain
- Compared to other substances transported by pipeline (oil, natural gas, water) the critical point of CO2 lies close to ambient
 - Small changes in P&T may lead to rapid changes in physical properties
 - Furthermore, the prevalence and variability of impurities add significant uncertainty regarding phase transition boundaries
- Speed of Sound Augmented Coriolis meters are well-suited for CCUS measurement
 - Improved compositional information under single-phase conditions by providing two thermophysical properties (density and sound speed) of the process fluid
 - Improved accuracy under multiphase conditions

CO2 Phase Diagram

Summary

- Coriolis meters are calibrated to accurately measure a wide range of single-phase flows
 - Historically Entrained Gas is known to degrade both the operability and accuracy of Coriolis meters
 - Modern Coriolis meters have been designed to improve operability in bubbly flows
 - Modern Coriolis meters are not designed to, nor are they capable of, maintaining accuracy in generalized bubbly flows
- CORxTM = Speed of Sound Augmented Coriolis
- Cost-effective solution to improve the accuracy of Coriolis meters operating on bubbly liquids
 - Indication of the presence of entrained gas
 - Percentage volume of entrained gas (GVF <20%)
 - Density and Mass corrected to near single-phase accuracy
 - Agnostic to Coriolis manufacturer or type
 - No modification to existing Coriolis

- SoS Augmented Coriolis
 Meter, liken to ani-lock
 brakes
- Continued Surety of measurement under adverse process conditions
- Remove risk, human and or machine error

Thank you & Questions

- Nigel Webster
- CorVera, LLC
- NWebster@CorVera.io
- www.CorVera.io